A Survey of Coinduction in Coq

Pierre-Marie Pédrot

$$
\mathrm{PPS} / \pi r^{2}
$$

18 June 2015

Plan

(1) A Quick Recap on Coq
(2) To Infinite and Beyond: Coinduction in Coq
(3) Those Infinite Spaces Frighten Me: Story of a Demise
4. Section IV: A New Hope

Coq

- Both your favourite proof assistant and programming language
- Based on the pCIC type theory
- Famous developments: CompCert, 4-colour theorem...
- Two prestigious ACM Awards last year

Coq

- Both your favourite proof assistant and programming language
- Based on the pCIC type theory
- Famous developments: CompCert, 4-colour theorem...
- Two prestigious ACM Awards last year

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).

In the beginning was the Lambda

First versions of Coq only implemented CoC (Coquand-Huet, 1984).

- Terms were essentially λ-terms (with rich typing)
- The only type former was $\Pi x: A . B$
- Poor expressivity as a logical system: $\forall 0 \neq 1$

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

Then came the Inductive types

Inductive types were introduced by Christine Paulin-Mohring (1990).

- New type formers: nat, list...
- New terms
- Constructors: 0,1 , cons...
- Destructor: match t with $\vec{p} \Rightarrow \vec{u}$ end
- Fixpoint: fix $F n:=t$
- New fantasmabulous theorems: $\vdash 0 \neq 1$

A natural case study

```
Inductive nat := 0 : nat | S : nat }->\mathrm{ nat.
```


A natural case study

```
Inductive nat := 0 : nat | S : nat }->\mathrm{ nat.
```

Must be a positive functor! \rightsquigarrow Syntactic "positivity condition"

A natural case study

```
Inductive nat := 0 : nat | S : nat }->\mathrm{ nat.
```

Must be a positive functor! \rightsquigarrow Syntactic "positivity condition"
Definition nat_rect :
\forall (P : nat \rightarrow Type)
($\mathrm{p} 0: \mathrm{P} 0$) ($\mathrm{pS}: \forall \mathrm{n}, \mathrm{P} \mathrm{n} \rightarrow \mathrm{P}(\mathrm{S} \mathrm{n})) \mathrm{n}, \mathrm{P} \mathrm{n}:=$
fun $P \mathrm{p} 0 \mathrm{pS} \Rightarrow$
fix $\mathrm{F} \mathrm{n}:=$ match n with
| $0 \Rightarrow \mathrm{p} 0$
| $\mathrm{Sm} \Rightarrow \mathrm{pS} m$ (F m)
end.

A natural case study

Inductive nat $:=0$: nat $\mid \mathrm{S}:$ nat \rightarrow nat.
Must be a positive functor! \rightsquigarrow Syntactic "positivity condition"
Definition nat_rect :
\forall ($\mathrm{P}:$ nat \rightarrow Type $)$
($\mathrm{p} 0: \mathrm{P} 0$) ($\mathrm{pS}: \forall \mathrm{n}, \mathrm{P} \mathrm{n} \rightarrow \mathrm{P}(\mathrm{S} \mathrm{n})) \mathrm{n}, \mathrm{P} \mathrm{n}:=$
fun P p0 $p S \Rightarrow$
fix $\mathrm{F} \mathrm{n}:=$ match n with
| $0 \Rightarrow \mathrm{p} 0$
| $\mathrm{Sm} \Rightarrow \mathrm{pS} m$ (F m)
end.
Must be a well-founded recursion! \rightsquigarrow Syntactic "guard condition"
Recursive calls must be "smaller".

An aftertought on dynamics

To ensure strong normalization, one must restrict fix reduction.

$$
\begin{gathered}
(\text { fix } \mathrm{Fn}:=\mathrm{t}) 0 \rightarrow(\text { fun } \mathrm{n} \Rightarrow \mathrm{t}[\mathrm{~F}:=(\mathrm{fixFn}:=\mathrm{t})]) 0 \\
(\mathrm{fixFn}:=\mathrm{t})(\mathrm{Sm}) \rightarrow(\text { fun } \mathrm{n} \Rightarrow \mathrm{t}[\mathrm{~F}:=(\text { fix } \mathrm{Fn}:=\mathrm{t})])(\mathrm{Sm})
\end{gathered}
$$

An aftertought on dynamics

To ensure strong normalization, one must restrict fix reduction.

$$
\begin{aligned}
& (f i x \mathrm{Fn}:=\mathrm{t}) 0 \rightarrow(\text { fun } \mathrm{n} \Rightarrow \mathrm{t}[\mathrm{~F}:=(\mathrm{fix} \mathrm{Fn}:=\mathrm{t})]) 0 \\
& (\mathrm{fixFn}:=\mathrm{t})(\mathrm{S} \mathrm{~m}) \rightarrow \quad(\text { fun } \mathrm{n} \Rightarrow \mathrm{t}[\mathrm{~F}:=(\text { fix } \mathrm{Fn}:=\mathrm{t})])(\mathrm{Sm}) \\
& (\mathrm{fixFn}:=\mathrm{t}) \mathrm{r} \nrightarrow
\end{aligned}
$$

when r is not an applied constructor.

Otherwise infinite loop due to strong reduction...

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

- Handling infinite datastructures as greatest fixpoints
- Kind of dual of inductive datatypes
- Inductive objects are to be destructed

$$
\text { induction: } \quad(F S \rightarrow S) \rightarrow \mu X . F X \rightarrow S
$$

- Coinductive objects are to be constructed

$$
\text { coinduction: } \quad(S \rightarrow F S) \rightarrow S \rightarrow \nu X . F X
$$

Enters Coinduction

Coinduction was introduced by Eduardo Giménez (1994).

- Handling infinite datastructures as greatest fixpoints
- Kind of dual of inductive datatypes
- Inductive objects are to be destructed

$$
\text { induction: } \quad(F S \rightarrow S) \rightarrow \mu X . F X \rightarrow S
$$

- Coinductive objects are to be constructed

$$
\text { coinduction: } \quad(S \rightarrow F S) \rightarrow S \rightarrow \nu X . F X
$$

- New term: cofix $F:=t$ constructs a coinductive
- Otherwise use the same constructions as for inductive types
- Constructors
- Pattern-matching

"That's easy!"

What is your favourite coinductive?

CoInductive stream := cons : nat \rightarrow stream \rightarrow stream.

What is your favourite coinductive?

CoInductive stream := cons : nat \rightarrow stream \rightarrow stream.
Same syntactic "positivity condition" as for inductive types

What is your favourite coinductive?

CoInductive stream := cons : nat \rightarrow stream \rightarrow stream.
Same syntactic "positivity condition" as for inductive types
Definition nats : stream :=
(cofix $\mathrm{F}:=$ fun $\mathrm{n}:$ nat \Rightarrow cons $\mathrm{n}(\mathrm{F}(\mathrm{S} \mathrm{n}))) 0$.

What is your favourite coinductive?

CoInductive stream := cons : nat \rightarrow stream \rightarrow stream.
Same syntactic "positivity condition" as for inductive types
Definition nats : stream :=
(cofix $\mathrm{F}:=$ fun n : nat \Rightarrow cons $\mathrm{n}(\mathrm{F}(\mathrm{S} \mathrm{n}))$) 0 .
Must be a anti-founded corecursion! \rightsquigarrow Syntactic "guard condition"

- Corecursive calls must be "blocked".
- Fairness assumption: the cofix must be productive at each unfolding

To infinity and beyond

As for inductive types one must restrict cofix reduction.

- fix was restricted by arguments being constructors
- Dually cofix is restricted by surrounding context:

$$
(\operatorname{cofix} F:=\mathrm{t}) \nrightarrow \quad \mathrm{t}[\mathrm{~F}:=(\operatorname{cofix} \mathrm{F}:=\mathrm{t})]
$$

To infinity and beyond

As for inductive types one must restrict cofix reduction.

- fix was restricted by arguments being constructors
- Dually cofix is restricted by surrounding context:

$$
\begin{gathered}
(\operatorname{cofix} \mathrm{F}:=\mathrm{t}) \nrightarrow \mathrm{t}[\mathrm{~F}:=(\operatorname{cofix} \mathrm{F}:=\mathrm{t})] \\
E[\operatorname{cofix} \mathrm{~F}:=\mathrm{t}] \longrightarrow E[\mathrm{t}[\mathrm{~F}:=(\operatorname{cofix} \mathrm{F}:=\mathrm{t})]]
\end{gathered}
$$

only when the innermost component of E is a pattern-matching.

Some Examples

```
Definition hd (s : stream) : nat :=
    match s with cons n _ # n end.
Definition tl (s : stream) : stream :=
    match s with cons _ s' }=>\mathrm{ s' end.
Definition X : stream := (cofix F := cons 1 (cons 2 F)).
```


Some Examples

```
Definition hd (s : stream) : nat :=
    match s with cons n _ # n end.
Definition tl (s : stream) : stream :=
    match s with cons _ s' }=>\mathrm{ s' end.
Definition X : stream := (cofix F := cons 1 (cons 2 F)).
The reduction behaviour forces to write unfolding lemmas.
Lemma stream_unfold : forall s : stream, s = cons (hd s) (tl s).
This is provable thanks to the fact hd and tl are pattern-matchings.
\rightsquigarrow without such unfoldings, proofs are horrendous (if doable).
```


More Examples

Luckily or not, manipulating coinductive objects foregoes equality.
Definition ones : stream := (cofix F := cons 1 F).
Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).
One cannot prove that ones $=$ onesones.

More Examples

Luckily or not, manipulating coinductive objects foregoes equality.
Definition ones : stream := (cofix F := cons 1 F).
Definition onesones : stream := (cofix F := cons 1 (cons 1 F)).
One cannot prove that ones = onesones.
... only that they are bisimilar.
CoInductive bisimilar : stream -> stream -> Prop :=
bisim : forall x s1 s2, bisimilar s1 s2 -> bisimilar (cons x s1) (cons x s2).

Lemma ones_onesones : bisimilar ones onesones.
(By a proof by coinduction.)

A Theoretical Failure

```
CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
```


A Theoretical Failure

```
CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
Definition BOOM := Eval compute in (etaeq : loop = loop).
```


A Theoretical Failure

```
CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
Definition BOOM := Eval compute in (etaeq : loop = loop).
Error: Found type Tick loop = Tick loop
but expected type loop = loop.
```


A Theoretical Failure

```
CoInductive tick := Tick : tick -> tick.
CoFixpoint loop := Tick loop.
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
Definition BOOM := Eval compute in (etaeq : loop = loop).
Error: Found type Tick loop = Tick loop
but expected type loop = loop.
```


Failure of subject reduction

 (a serious matter)
"I didn't know that."

Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.

- The reduction rule allows for more precise information about loop
- The dependency of the matching allows this information to escape
- Reducing the matching loses this information

```
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
etaeq }\longrightarrow\quad\mathrm{ eq_refl (Tick loop)
```


Analysis of the failure

The problem stems from the use of pattern-matching in etaeq.

- The reduction rule allows for more precise information about loop
- The dependency of the matching allows this information to escape
- Reducing the matching loses this information

```
Definition etaeq : loop = loop :=
match loop with
| Tick t }=>\mathrm{ eq_refl (Tick t)
end.
etaeq }\longrightarrow\quad\mathrm{ eq_refl (Tick loop)
```

Dependent pattern-matching on coinductive types is evil. (we're doing it wrong)

A More Practical Issue

The current handling of guardedness is also problematic in practice.

- Inductive proofs allowed by an induction principle
- abstract over the guard condition
- forces at least one step of the fixpoint
- modularizes proofs: the induction tactic

A More Practical Issue

The current handling of guardedness is also problematic in practice.

- Inductive proofs allowed by an induction principle
- abstract over the guard condition
- forces at least one step of the fixpoint
- modularizes proofs: the induction tactic
- No such abstraction for coinductive proofs
- cofixpoints are built by hand (the infamous cofix tactic)
- steps must be provided as syntactic constructors
- cannot abstract over them (no functions, no opaque terms)
- thus no granularity

A More Practical Issue

The current handling of guardedness is also problematic in practice.

- Inductive proofs allowed by an induction principle
- abstract over the guard condition
- forces at least one step of the fixpoint
- modularizes proofs: the induction tactic
- No such abstraction for coinductive proofs
- cofixpoints are built by hand (the infamous cofix tactic)
- steps must be provided as syntactic constructors
- cannot abstract over them (no functions, no opaque terms)
- thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.

A More Practical Issue

The current handling of guardedness is also problematic in practice.

- Inductive proofs allowed by an induction principle
- abstract over the guard condition
- forces at least one step of the fixpoint
- modularizes proofs: the induction tactic
- No such abstraction for coinductive proofs
- cofixpoints are built by hand (the infamous cofix tactic)
- steps must be provided as syntactic constructors
- cannot abstract over them (no functions, no opaque terms)
- thus no granularity

One cannot chain coinductive lemmas in proofs.
Everything must be done in one go.
In theory: no problem.
In practice: Really, really painful.

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.
"Coinductives are like inductives, save that they're greatest fixpoints."

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.
"Coinductives are like inductives, save that they're greatest fixpoints."

* ${ }^{\mathrm{j}} \mathrm{No!}$ *

Through the Looking Glass

The failure of subject reduction is due to a misinterpretation.
"Coinductives are like inductives, save that they're greatest fixpoints."

* ${ }^{\mathrm{j}} \mathrm{No!}$ *

+ Inductives lie on the positive side: \oplus, \otimes, μ
- Built out of constructors
- Destructed by fixpoint + pattern-matching
- Normal inhabitants have a constrained form
- Coinductives lie on the negative side: \&, \mathcal{P}, ν
- Built out of cofixpoints + records
- Destructed by projections
- Normal inhabitants can be about anything

A Solution to the Subject Reduction Issue

Matthieu Sozeau introduced in Coq 8.5 the so-called primitive projections.

- Records defined by projection rather than pattern-matching
\rightsquigarrow True negative products
\rightsquigarrow Projections are first-class terms
- Originally for efficiency and semi-theoretical (η-equivalence) purposes
- Happens to solve the subject reduction issue
\leadsto "Copattern"-style coinduction
\rightsquigarrow Can only observe projections, not the object itself
\rightsquigarrow When Coq turns Object-Oriented?

Revisiting the Example

```
CoInductive stream := { hd : nat; tl : stream }.
Definition cons n s := {| hd := n; tl := s |}.
Definition nats :=
    (cofix F := fun n => {| hd := n; tl := F (S n) |}) 0.
Definition ones := cofix F := {| hd := 1; tl := F |}.
CoFixpoint ones2 :=
    cofix F := {| hd := 1; tl := {| hd := 1; tl := F |} |}.
```


Drastic Changes

- Positivity condition is similar
- Guardedness is adapted as:

Corecursive calls must be under a record field

- Reduction is adapted as:

$$
(\operatorname{cofix} F:=t) \cdot p \longrightarrow \quad(t[F:=(\operatorname{cofix} F:=t)]) \cdot p
$$

- Bisimilarity becomes essential
\rightsquigarrow One cannot prove anymore that $s=c o n s$ (hd s) (tl s)
\rightsquigarrow Equality over coinductives becomes trivial
\leadsto Coinductives as blackboxes
- The problematic example is not writable anymore
\rightsquigarrow Less equality for a safer world!

A solution to the practical problem

The cofixpoint abstraction problem can be worked around.

- The notions of "positive" or "being productive" are too syntactical.
- Let's make them semantical!

A solution to the practical problem

The cofixpoint abstraction problem can be worked around.

- The notions of "positive" or "being productive" are too syntactical.
- Let's make them semantical!

We will use Mendler-style coinduction.

- A program translation making everything positive for free
- Works by expliciting the inner state of the inductive
- A technique successfully used by the Paco library (Chung-Kil Hur)
- "Open recursion approach"

The Underlying Mathematical Justification

Let \mathbf{H} be the complete lattice of propositions.
Let $F: \mathbf{H} \rightarrow \mathbf{H}$ be some function and pose

$$
\begin{aligned}
\lceil F\rceil & : \\
& (\mathbf{H} \rightarrow \mathbf{H}) \rightarrow \mathbf{H} \rightarrow \mathbf{H} \\
& :=\lambda G X . \exists Y .(F Y) \wedge(Y \rightarrow X \vee G X)
\end{aligned}
$$

Theorem

- $\lceil F\rceil$ is syntactically positive in G.
- In particular $\nu\lceil F\rceil: \mathbf{H} \rightarrow \mathbf{H}$ exists.
- Moreover, if F is monotone, $\nu\lceil F\rceil(Y) \equiv \nu X$. $F(X \vee Y)$.
- In particular $\nu\lceil F\rceil(\perp) \equiv \nu F$.

Here $\nu\lceil F\rceil$ acts as " νF with explicit inner state".

Reasonment Principles

By applying the previous results, one gets for free three principles.
(Init) $\nu F \equiv \nu\lceil F\rceil(\perp)$
(Unfold) $\nu\lceil F\rceil(X) \equiv F(X \vee \nu\lceil F\rceil(X))$
(Coiter) $(Y \rightarrow \nu\lceil F\rceil(X)) \equiv(Y \rightarrow \nu\lceil F\rceil(X \vee Y))$

The Mendlerified Example

```
CoInductive stream :=
    cons : nat -> stream -> stream.
CoInductive stream (R : Type) :=
    cons : nat -> (R + stream R) -> stream R.
Definition coiter :
    forall L R, (L -> stream (L + R)) -> L -> stream R.
The corecursion combinator allows for cofix-free reasoning.
Definition nats : stream False :=
    coiter (fun n => cons n (inr (inl (S n)))) 0.
Definition ones : stream False :=
    coiter (fun _ => cons 0 (inr (inl tt))) tt.
Definition ones2 : stream False :=
    coiter (fun _ => cons 0 (inl (cons 0 (inr (inl tt))))) tt.
```


Conclusion

- Coinduction is a bit tricky in Coq
- ... but things are getting better
- ... and we have kludges to work around its defects

Scribitur ad narrandum non ad probandum

Thanks for your attention.

